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Abstract. Statistical regularities at the top end of the wealth distribution in the United States are examined
using the Forbes 400 lists of richest Americans, published between 1988 and 2003. It is found that the
wealths are distributed according to a power-law (Pareto) distribution. This result is explained using a
simple stochastic model of multiple investors that incorporates the efficient market hypothesis as well as
the multiplicative nature of financial market fluctuations.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management – 89.65.-s Social
and economic systems – 89.75.Da Systems obeying scaling laws

1 Introduction

Once a year, the Forbes journal publishes the list of
400 richest people in the United States [1]. The list in-
cludes the net worth of each individual as well as back-
ground information about the businesses that have lead
to this prosperity. It includes individuals involved in all
sectors of the economy, such as computer software (Bill
Gates, Paul Allen and Larry Ellison), financial invest-
ments (Warren Buffet), retailing (the Walton family),
computer hardware (Michael Dell) as well as media, en-
tertainment, communication, real estate and many other
sectors.

Although the people in the Forbes 400 list made their
fortunes in various different ways, the distribution of
their wealths exhibits a striking statistical regularity. The
wealths wr of the 400 richest Americans in 2003, ordered
by their ranks r, are shown in Figure 1, on a log-log scale.
The data on this graph, known as the Zipf plot [2], can
be fitted by a straight line, indicating that the wealths
exhibit a power-law behavior of the form

wr ∼ r−β , (1)

where, for this data, the Zipf exponent is β = 0.78± 0.05.
This is a remarkable result because power-law distribu-
tions exhibit the special property that they have no char-
acteristic scale. It may indicate that the same dynamical
rules of gains/losses apply across the entire economy in-
dependently of the particular sector or the wealth and
sophistication of different investors [3]. For example, if
we hypothetically extrapolated the straight line fit, the
wealth of the individual ranked number million, would be
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Fig. 1. Zipf plot of the wealths wr of the investors in the
Forbes 400 of 2003 vs. their ranks r. The power-law fit, with
β = 0.78 ± 0.05, was obtained in the range 10 ≤ r ≤ 300. The
corresponding simulation results are shown in the inset.

about three million US dollars. If this hypothesis is cor-
rect the Forbes data provides useful information about the
wealths of people in percentiles far away from the top 400.
These findings raise the broader, puzzling question about
the origins of the anomalous nature of the wealth distri-
bution. While the physical properties of humans (such as
height) as well as the mental and social abilities typically
follow Gaussian distributions, that tend to be rather nar-
row, their wealths are so widely distributed and span over
seven orders of magnitude.
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Fig. 2. The exponent α(t), obtained from the Zipf analysis,
using the relation α = 1/β, vs. the year, t, between 1988 and
2003. The power-law fit of the Zipf data was obtained in the
range 10 ≤ r ≤ 300.

2 The Pareto distribution

The wealth-rank relation of equation (1) implies a power-
law distribution of the wealth

P (w) ∼ w−(α+1), (2)

often called the Pareto distribution [4], where α is the
Pareto exponent. However, due to the relatively small
number of data points for each year, the distribution P (w)
obtained after binning the data turns out to be rather
noisy. Thus, for a single year, the Zipf plot and equa-
tion (1) provide more reliable results. Note that in general
the connection between the Pareto and the Zipf exponents
is α = 1/β. Therefore, the distribution in Figure 1 corre-
sponds to α = 1.28. To examine the temporal variations of
α we repeated the Zipf analysis for each year, from 1988
to 2003. It was found that α varies widely in the range
between 1.1 and 1.7. The results for α vs. the year are
shown in Figure 2.

Consider the average wealth

w̄(t) =
400∑

r=1

wr(t)/400 (3)

of the 400 investors at year t. The time dependence of
w̄(t) for the Forbes 400 investors between 1988 and 2003,
shown in the inset of Figure 3 (circles), reflects the stock
prices after the 1987 crash, through the recession of the
early 1990’s, the bubble economy of the late 1990’s and its
aftermath, and a recovery in 2003. Interestingly, there is a
negative correlation between w̄(t) and α(t). In particular,
α(t) is lowest (namely, inequality is highest) at the peak
of the bubble in 2000, when w̄(t) is largest.

In order to obtain more reliable results from the Pareto
analysis, we perform a multi-year analysis by combining
the data from a sixteen-year period (1988–2003) to con-
struct a much larger data set wr(t) where t is the year. The

Fig. 3. The Pareto distribution P (x) of the normalized wealths
of the Forbes 400 investors (red circles) and the corresponding
simulations results (blue squares). The inset shows the average
wealth w̄(t) vs. time (circles), and simulation results with finer
temporal resolution (rough solid line).

multi-year analysis requires using the normalized wealth
variables xr(t) = wr(t)/w̄(t). The normalized variables
from all years are combined together to form the proba-
bility density P (x). It is found that in spite of the dramatic
variations in the economic climate during this sixteen-year
period, P (x), shown in Figure 3 (circles), can be fitted very
well by a power-law

P (x) � k x−(α+1) x > xmin, (4)

characterized by a single exponent α = 1.49± 0.04, where
k = α xα

min is a normalization constant. The exponent α
can be considered as an index of inequality in the soci-
ety. For larger values of α the wealth is more evenly dis-
tributed, while for smaller values of α the gaps between
rich and poor people broaden.

The power-law distribution of the wealths, obtained
by the multi-year analysis of the Forbes data, confirms
the hypothesis made over a century ago by the economist
Vilfredo Pareto [4]. During the century since Pareto’s
work, empirical evidence has been accumulated in support
of his hypothesis [5–9]. However, the underlying dynamics
that leads to this broad and self-similar distribution has
not yet been fully understood.

The fundamental property of financial markets that
enables some people to get so rich is the multiplicative
nature of capital investments. Due to this property, the
effect of variations in stock prices on the wealth of each
investor is proportional to the number of shares he/she
holds. To exemplify this, consider an investor who has a
capital of $1000. What does it take to make a million dol-
lars out of it? In an additive investment process that yields
a fixed amount of $1000 per year, it would take 999 years.
However, a multiplicative process that doubles the invest-
ment each year would require only 10 years. Indeed, recent
analysis of stochastic models with multiplicative dynamics
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[10–13] has provided much insight about the origin of the
power-law distributions in economic systems [14–20].

3 Stochastic multiplicative dynamics

Here we show that the wealth distribution obtained from
the Forbes data can be reproduced by a simple stochastic-
multiplicative model that incorporates the following as-
sumptions: (I) the temporal variations in the market value
of an investment portfolio can be described by random
noise; (II) the markets are efficient [21,22], namely no in-
vestor can consistently “beat the market” reaping abnor-
mal returns. In our model this feature is incorporated by
drawing the random fluctuations of all the investor port-
folio returns from the same probability distribution; (III)
the random noise is of multiplicative nature, in the sense
that the effect of stock price fluctuations on each individ-
ual is proportional to the number of stocks he/she owns;
(IV) the distributions that appear in economic systems are
bounded from below. For example, the income distribution
is bounded from below due to social security policies that
ensure some minimal income, to support the most basic
needs for food and shelter. The lower bound is not fixed
but proportional to some fraction of the average income,
that reflects the cost of living. Similarly, the power-law
distribution of the wealth exhibits a lower bound, wmin,
that may represent some minimal wealth needed for basic
existence, while the excess beyond it tends to be invested.
It is thus reasonable to assume that wmin is equal to some
fraction c < 1 of the average wealth in the society.

Our model consists of N investors whose wealths at
time t are given by wn(t), n = 1, . . . , N , where the index
n represents the investor’s name. The wealths are updated
asynchronously such that the average time between suc-
cessive updates of each of the wn’s is ∆t [14]. At each
update, the randomly chosen wealth wn is multiplied by
a factor λ drawn from a given distribution p(λ) [23]. As a
result

wn → λ wn, (5)

while all the other wm’s remain unchanged. The threshold
wealth wmin(t) required for entering and staying in the
market at time t is given by wmin(t) = c w̄(t), where c < 1
is a parameter and w̄(t) is the average wealth at time t. If
wn(t) is reduced below wmin(t) the investor n is dropped
from the list and a new investor then enters, taking over
the index n, with an initial wealth wn(t) = wmin(t).

We have performed computer simulations of the model
for N = 400. The value of the parameter, c = 0.337,
was obtained directly from the Forbes data, as the ra-
tio wmin/w̄, averaged over the 16 years, where wmin is
the wealth of the least wealthy investor on the list. Start-
ing from a homogeneous distribution of the wealths, they
spontaneously evolved towards a power-law distribution
[shown in Fig. 3 (squares)], with an exponent α which is in
excellent agreement with the empirical data. It was found
that α varies from year to year but remains within the
range of 1 < α < 2, in agreement with empirical studies
of the wealth distributions in various countries [5–8].

The model predicts that the power-law distribution of
the wealths extends well beyond the top 400 investors.
To examine this feature we performed simulations with
N = 10 000 investors and obtained a power-law distribu-
tion of the wealths with the same value of α. Analysis of
the model shows that for N not too small, the exponent
α is determined by the parameter c, according to [14,18]

α � 1
1 − c

. (6)

This result provides a strong connection between the
lower-cutoff, that is typically determined by certain so-
cial security policies, and the exponent α that affects
the wealth distribution of the entire population, includ-
ing those at the top. The dependence of α on c given
by equation (6) indeed confirms that α > 1 for c < 1,
in agreement with empirical studies [5–8]. In power-law
distributions with 1 < α < 2, the first moment remains
bounded when the system size increases, while the second
moment diverges. In case that α > 2, the second moment
is bounded as well. Such power-law distributions, with a
bounded second moment, are obtained when the model
is simulated with c > 0.5 [18], in agreement with equa-
tion (6). In empirical studies one obtains α < 2, which
can be related to the fact that c is significantly smaller
than 0.5.

It turns out that power-laws that emerge in economic
systems as well as in general multiplicative processes are
non-universal, unlike the critical exponents that appear
in second order phase transitions, e.g., in magnets and
fluids [24]. One may wonder why the exponent α of the
wealth distribution tends to take values in the range be-
tween 1 and 2, while in other physical systems there is no
such restriction. For example, the distribution of magni-
tudes of earthquakes follows a power-law with α < 1 [25].
In power-law distributions with α < 1 the first moment di-
verges as the system increases. In the case of earthquakes
this does not lead to a contradiction, due to the unlimited
separation of time scales between the slow process of strain
buildup and its extremely fast release in an earthquake.
Since the time between two large earthquakes diverges
with their size, they have unlimited time to accumulate
the energy. On the contrary, in economic systems the pro-
cesses of wealth accumulation and redistribution take over
comparable time scales. Therefore α < 1 cannot be ob-
tained. It is reasonable to believe that the average wealth
in a society is tied in some way to the average productivity
per worker. This productivity is presumably bounded and
cannot diverge as the system size increases. Note that in
the model, α < 1 can be obtained for small systems when
c is reduced below some threshold. This leads to large fluc-
tuations, that may characterize economic instability [18].

4 Efficient markets

The power-law distribution of the wealths is insensitive to
the properties of the distribution p(λ). However, a crucial
assumption in the model is that the same distribution p(λ)
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is used for all the investors. It was found that simulations
in which this assumption is violated do not give rise to a
homogeneous power-law distribution of the wealths [8,26].
Thus, according to the model, the power-law wealth dis-
tribution in the Forbes data indicates that the short time
gain/loss distribution is similar for all the investors. This
conclusion may look like a paradox. While it is clear that
to enter the Forbes 400 list one has to do ’something right’
in a big and consistent way, the statistical regularities of
the wealth distribution can be captured by a model that
exhibits a completely random dynamics. The resolution
of this paradox is that although the distribution p(λ) is
similar for all the investors, the actual sums of λ’s that
each one draws are different. The multiplicative dynamics
greatly magnifies the differences between more successful
and less successful investors, and builds up the power-law
distribution of their wealths. The assumption that p(λ) is
the same for all the investors is a strict implementation
of the efficient market hypothesis, which states that no
investor can consistently obtain a return distribution bet-
ter (adjusted for risk) than the return distributions of the
other investors. Thus, our model provides a connection
between the efficient market hypothesis and the Pareto
distribution of wealth.

5 Temporal variations, gains and losses

The multi-year data set allows us to examine the tempo-
ral variations of the wealths, and particularly the distri-
bution of returns of individual investors. The log-return
of investor n in the period between year t and year t + τ ,
is given by

gn(τ) = lnwn(t + τ) − ln wn(t). (7)

From the Forbes 400 data we calculated gn(τ) for all the
pairs of years t and t + τ where τ = 1, 2, 4 and 8 years,
for those investors which were included in the list in both
years. Using these results we obtained the distributions
Pτ (g) of the log-returns, shown in Figure 4.

In order to compare these results to the temporal fluc-
tuations in the model one has to relate the time units of
the model to the physical time. It turns out that the model
exhibits remarkable scaling properties that are useful for
this task. Due to the scaling, the results of simulations are
invariant to the choice of the time unit ∆t of the model,
as long as the width of p(λ) is adjusted accordingly. In the
simulations, we chose ∆t = one day, assuming 250 work-
ing days a year. Note that gn(τ) for τ = 1 day, coincides
with the single-day log-return given by lnλ. As a result,
for τ = 1 day Pτ (g) = P (ln λ) = λp(λ). Therefore, Pτ (g)
depends on the detailed form of p(λ) as long as τ is small.
However, the Forbes data analyzed here is published only
once a year (corresponding to τ = 250). Over such a pe-
riod the fine details of p(λ) are washed out except for its
average 〈λ〉 and standard deviation.

In the simulations, the standard deviation of p(λ), that
controls the mobility of people across the wealth distribu-
tion, was adjusted to match the empirical result that each

Fig. 4. The probability distribution of the returns Pτ (g),
τ = 1, 2, 4 and 8 years, for the Forbes investors. Corresponding
simulation results are shown in the inset.

year about 15 percent of the list members are replaced by
others. The average 〈λ〉(t) that determines the time evo-
lution of w̄(t) was adjusted in time to follow the evolution
of the empirical w̄(t) (see inset of Fig. 3). The distribu-
tions of the log-returns obtained from the simulations are
shown in Figure 4 (inset).

The temporal resolution of the Forbes data is one year.
However, the scaling properties of the model allow us to
study fluctuations over shorter time scales. In particular,
it is interesting to explore the fluctuations of w̄, which
are expected to be strongly related to those of market
indices such as the Standard & Poor 500 (S&P500). It was
observed long ago that fluctuations in financial markets
exhibit non-Gaussian “fat tailed” distributions. Already in
the 1960’s Mandelbrot studied the fluctuations in cotton
prices and discovered that they can be expressed by a
Lévy-stable distribution [27]. Recent empirical studies of
the fluctuations of the S&P500 index provided apparently
conflicting results. The central peak of the distribution of
returns, P (0), was found to exhibit scaling behavior which
is consistent with the Lévy distribution [28]. However, the
tails of the distribution of returns were found to decay as
a power-law with α � 3, namely beyond the Lévy-stable
range, 0 < α < 2 [29].

An interesting question is whether the model, studied
here in the economic context of the wealth distribution,
can reproduce the empirical results for the fluctuations in
financial markets. To study this question we have analyzed
the temporal fluctuations of w̄ obtained from the model.
The log-return G(τ) for w̄ over a time interval τ is given by

G(τ) = ln w̄(t + τ) − ln w̄(t). (8)

The distribution Pτ (G) of the log-returns shows a Lévy-
like scaling of the central peak Pτ (0) ∼ τ−1/α, charac-
terized by the same exponent α = 1.49 ± 0.04, found
for the wealth distribution (Fig. 5), which is close to the
value found for the S&P500 index [28]. However, the tails
are found to decay according to P (g) ∼ |g|−(α+1), where
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Fig. 5. The height of the central peak of Pτ (G) vs. τ (in units
of ∆t) on a log-log scale. The inset shows a scaling plot of
Pτ (r/τ 1/α) for τ = 1, 2, 4, 8. The central peaks coincide con-
firming the scaling in the main Figure but the tails deviate
from the Lévy-stable form.

α = 2.3, namely falls outside the range of the Lévy-stable
distribution [30]. These results are consistent with the em-
pirical finding both for the central peak [28] and for the
tails [29].

6 Summary and discussion

We have presented a simple stochastic model of multiple
investors that incorporates the efficient market hypothe-
sis as well as the multiplicative nature of financial mar-
ket fluctuations. The model exhibits a power-law (Pareto)
distribution of the wealths of the individual investors, in
good agreement with empirical results, as revealed by the
Forbes 400 lists. It thus provides an interesting connec-
tion between market efficiency, the Pareto distribution of
wealth and the non-Gaussian fluctuations in financial mar-
kets.

The observed regularity of the wealth distribution at
the high wealth range confirms the hypothesis made over
a century ago by Pareto [4]. The fact that power-law dis-
tributions exhibit no characteristic scale indicates that the
same dynamical rules of gains/losses may apply indepen-
dently of the particular wealth percentile. The power-law
distribution may thus extend to people in wealth per-
centiles far away from the top 400. Note, however, that
empirical studies indicate that the power-law distribution
of wealth does not extend to the entire population but
exhibits a cross-over to a different distribution at lower
percentiles [31]. This may be explained by the fact that
people in lower percentiles make very few transactions in
the stock market and their wealth is only marginally af-
fected by financial market fluctuations. It will thus be use-
ful to develop dynamical models that account for both the
power-law distribution of wealth at the higher percentiles
and the exponential distribution at the lower percentiles.

This work was supported by a grant from the Israel Science
Foundation.
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